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Abstract

A new image reconstruction algorithm for imaging systems with circular symmetric

observation is presented in this paper. Typical imaging systems of this kind include the
holographic synthetic aperture radar (HSAR), the computer aided tomography (CAT), and
the ultrasonic reflectivity tomography (URT). Based on the circular symmetry, this

algorithm performs fast Fourier correlation in the azimuth dimen;ion. The reference

functions are the amplitude weighted two-dimensional spectra ;f the point target
responses (PTR). The reference function is updated for each range bin to achieve exact
focusing. By choosing proper weighting functions, ibis algorithm is capable of generating
an ideal point spread function as that predicted by the Fraunhoher diffraction of a circular

apertture. The computation efficiency of this algorithm is one order of magnitude better
than the convolution backprojection  algorithm due to the characteristics of the 2-D
spectrum of the PTR.

1. INTRODUCTI ON

The problem of image reconstruction for imaging systems with circular symmetric
observations is considered in this paper. In this type of systems, observation of the targets
is made by sensors located at points equally spaced around a circle surrounding the targets.

Each observation results in a stream of data samples, each of which is the line integral of

the target signature. A broad range of imaging systems falling into this category can be
found in the fields of synthetic aperture radar (SAR), the computer aided tomography

(CAT), the ultrasonic imaging, and sonar. In the SAR field, this type systems include the
holographic SAR (HSAR) [1, 2] in a circular flight path and the inverse SAR (ISAR) [3]. In

the CAT field, they include x-ray CAT systems, both parallel beam and fan beam [4], the

magnetic resonance imaging (MRI) system [5], and the positron emission tomography
(PET) system [6]. In the ultrasonic imaging field, it includes the ultrasonic reflectivity

tomography (URT) [7]. In this paper, four imaging systems are chosen as examples for
analysis. These are the holographic synthetic aperture radar (HSAR), the x-ray computer
aided tomography (CAT), both parallel beam and fan beam, and the ultrasonic reflectivity
tomography (URT). The analysis given in this paper, however, will be applicable to all the
above mentioned imaging systems.

A HSAR

along a circular

in a circular path is shown in Figure la. In this system, an aircraft flies
flight path above the ground. Its wide beam radar points to the center of
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the flight circle. Electromagnetic pulses are transmitted periodically from the radar to the

ground. These signals are bounced back from the ground targets, within the radar
footprint, and received by the same radar. Echo signals are then demodulated by the carrier
frequency, converted into discrete data samples, and processed into images in real time or

stored in an on-board recorder for later processing.

The geometry of a two dimensional ultrasonic reflectivity tomography is depicted in
Figure lb. It consists of a water tank of dimensions greater than that of the object to be

imaged. A moving transducer with a very narrow beam width in the third dimension scans

over the outer circle. Ultrasonic pulses are emitted from the transducer. Signals reflected
from the imaged object are sensed by a receiver, collocated with the transducer, for further
processing. For simplification, we shall consider that the object is an idealized reflecting
medium in which the velocity of the sound is constant, the medium is weakly reflecting,

and absorption is uniform over the region of interest [7].

The first and second generation x-ray CAT systems are shown in Figure 2a. In this

configuration, the x-ray source generates parallel x-ray beams. The x-ray sensors are
aligned perpendicular to these x-ray beams for detecting x-rays passing through the

imaged object. These detected signals represents the projection of the object from all
different view angles. The third and fourth generation x-ray CAT systems [8] are using fan

beams as shown in Figure 2b. In this configuration, ihe point source generates x-ray beams
in radial directions. The stationary x-ray sensors are mounted on an outer circle. Since the

detected signals does not represent the projection of the object of any view angle, image
reconstruction algorithm is generally different.

Differences among the systems illustrated in Figure 1 and 2 can be summarized as
follows. The detected signal of the x-ray CAT is the logarithm of the attenuation of the
target. The received signals from the HSAR and URT systems are the back scatter of the
electromagnetic (EM) wave and ultrasonic wave, respectively. Figure 3 illustrates the
geometry’s of the lines, along which the target signatures are superposed and detected by
the sensors. In the CAT systems, these lines are straight ones. The spacing between these
lines is determined by the width of the x-ray beams. In both HSAR and URT, the lines are

concentric circles. The spacing between these lines is determined by the width of the

effective radar impulse or the effective ultrasonic impulse. For the HSAR, an addition factor
affecting the line spacing is the local incidence angle of the EM wave.
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1.1 History of Processing Algorithms

The mathematical foundations of tomography was established by Radon [9]. The
development of the CAT in medical applications started at early 70 and has been stabilized

after two decades. Except the once used iterative algebraic reconstruction algorithm [10],

commonly used image reconstruction algorithms include the convolution backprojection

(CBP) [11, 12] and the direct Fourier method [13]. The CIIP  algorithm is most popular in
CAT image reconstruction because of its better image quality and easy adaptation to the

fan beam geometry. The direct Fourier algorithm is highly efficient in computation.
However, its image quality highly depends on the type and length of the interpolator used

to covert signal spectrum into a Cartesian grid. In addition, its application is limited to the
parallel beam CAT.

the
are

The concept of the synthetic aperture radar was pioneered by Carl Wiley of

Goodyear Aircraft Company. Image reconstruction based on Doppler processing
widely used in the SAR processing field [14,15,16,17]. The analogy between the parallel
beam CAT and a coherent imaging system for observing a rotating object was first reported
by Mensa [18]. Later this analogy was extended to the SAR and the spotlight SAR [19].

Since then, both the CBP and direct Fourier algorithms were successfully applied to the
SAR applications [20, 21]. Again, the CBP algorithm yields better image quality than the
direct Fourier algorithm. Another algorithm needs to be mentioned is the circular

convolution algorithm applied to the coherent Doppler tomography (CDT) [22, 23]. When
dealing with systems using CW irradiation, this algorithm was found both efficient and

with high image quality.
---

The SAR related systems mentioned above were mostly confined to a narrow radar
beam and a narrow signal bandwidth as compared to the radar carrier frequency. In

addition, most analysis has been made to the far field problem such that the iso-range lines
may be approximated by parallel lines. Recent development in foliage and ground

penetration radar employs radars with longer wavelengths. Due to the limitation of the
antenna size, the radar beam angle naturally becomes much wider. Furthermore, in order

to achieve a high resolution, as compared to its wavelength, the signal bandwidth must
also be wide as compared to its carrier or center frequency. System of this kind may be
referred to as the holographic SAR (HSAR) [3]. Examples of this type radar system include
those developed in Sweden’s National Defense Research Establishment [24] and SRI
International [25]. In this field, the image reconstruction algorithm is still in its early
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development stage. This also gives the motivation of this paper to develop algorithm

applicable to this area.

Most popular ultrasonic medical imaging systems used in diagnosis include the B
scan imaging mode and transducer arrays [9]. The B scan mode image is obtained by

spatially scanning a pencil beam ultrasonic device along the surface of an object. The image

of a cross section of the object is the reflected signal displayed as a two-dimensional
function of time and scanning distance. The transducer arrays allows the ultrasonic beam

steered to any direction in a plane to avoid the need of moving the transducer as that in the
B scan mode. Other imaging modes still in experimental or study stage include the
ultrasonic transmission tomography [26], the ultrasonic reflectivity tomography [27, 2], and

the ultrasonic diffraction tomography [28]. The problem addressed in [7] is of particular
interest. This is because that its problem formulation using line integrals is analogous to

that used in the CAT system, but, the nature of wave phenomena is analogous to a SAR
system. The algorithm proposed in [7] is an exact solution based on Hankel transforms. A

shortcoming of this algorithm is that it is very difficult to implement the Hankel transform
for both high accuracy and efficient computation.

2. IMAGE RECONSTRUCTION USING PTR SI’ECTRUM

In this section, the point target responses of several imaging systems are formulated.

The data received by the imaging system is expressed in terms of both the target signature

and the point target response. The image reconstruction algorithm is then described.

To illustrate the concept of image reconstruction based on the point target response

(PTR), let us consider an ideal case radar system: a pencil beam radar as shown in Figure 4.
In this system, the width of the radar beam is such that its azimuth spatial resolution is

equal to its range resolution. The data gathered by this radar in one complete observation
cycle directly represents the target image in a polar grid. Other than an interpolation
process to convert data samples back to the Cartesian grid, no image reconstruction process

is required. Obviously, in such a system, a single point target within the imaging circle
would cause a single point-like response among all observed data. This point-like response
is usually referred to as the point spread function (l’SF). In contrast, a point target imaged

by a wide beam HSAR will cause a line-like response in the observed data
Figure 7c. This line-like PTR may be viewed as a “blurred” version of the

set as shown in
PSF. Therefore,
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one may utilize the concept of inverse filtering [30] to restore the resolution for the image
concealed in the observed data.

To extend the PTR concept to the CAT systems, one must introduce the idea of the
data reference point and equivalent distance. Figure 5a and 5b illustrates the geometry of
the distance r~t between the target and the radar sensor or ultrasonic transducer.  In
contrast, Figure 5C and 5d illustrates the geometry of the equivalent distance r~t between

the target and the data reference point. The data reference point is defined as the point
lying on the imaging circle encircling all the imaged area and the line connecting the data
reference point and the center of the circle must be perpendicular to the x-ray beam passing
the center. In polar coordinate, let (r$, e) represent the coordinate of the sensor or data

reference point, where the origin of the coordinate is the center of the circle and 0 is
referred to as the azimuth angle of the sensor. ( rt, P) represents the Coordinate Of a Point

target, the distance or equivalent distance of four example systems can be expressed by:

(1) Computer Aided Tomography - Parallel Beam

r.~t(o)= r,$t(o>~r>q)  = r~ – rt .cos(q–  0)

(2) Computer Aided Tomography - Fan Beam

r~ rt “ cos(q – 0)
r&$t(0)=r$– —” —.. —

tany (r~ /tan y)–rt “sin(p–  o)

where ~ is the half angle of the x-ray fan beam as shown in Figure 3.d.

(3) Ultrasonic Reflective Tomography

~~r.’-fc~~r~)r,$t (@) = r~ + rt

(4) Holographic Synthetic Aperture Radar

F

_ .  —.-— —
2  2r~rt .cos(p  -  0)r,ft(e)= h  +r$+rl – (4)

where h is the altitude of the aircraft in Figure 3a. Eq. (4) cljffers from Eq, (3) only by the
radar altitude. When h approaches zero, Eq. (4) approaches Eq. (3). In the following
sections, the analysis for the URT and HSAR systems wil 1 be combined when there is no
need for making a distinction, In the fan beam CAT, the range of the target rt must be
within r~ cos y in order to be illuminated in all angles.
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In a SAR system, the point target response from a impulse like radar pulse can be
expressed as the same impulse with a time delay associated with its round-trip wave
traveling distance. For a point target located at (rl, ~) with a physical dimension much

smaller than the width of the radar impulse, its response is given by

(1, e)= 8(t - Z“r$t(o,rt,q)
‘(rt ,9) )  for O<0<2Z

c
(5)

where c is the speed of light and ~(t) is a delta function. Here, the Doppler frequency

introduced by the relative velocity between the radar and the target is ignored since it is a
reasonable approximation for most cases. Also, the motion error associated with a HSAR is
not considered in the following analysis. By chanSing the time coordinate into a spatial
coordinate with f = (zs ~d ) / c, we can rewrjte the point target response as

‘(rf,W) (rd, @)= a(rd –r~t(e,rr,~))  for OS 8<27r  and ()<r~  <2r~ (6)

It is more convenient to reverse the sequence of the data samples and shift the reference

point to that corresponding to the center of the imaging circle by choosing a variable
r =  r~hif[ – r~ , where r~hift k equal to r~ for both CAT systems and the URT system, and

r$hift is equal toFr~ + h for the FISAR system. Then Eq. (6) can be expressed as

‘(rtjq) (r,8)=6(r –ro1(8,  rr, p)) for 0SOS2~and  –r, <r<r~ (7)

where rot (e, rt, ~) = rshl~t – rst ( d, rt, ~). For a SAR system with limited bandwidth

centered at a carrier frequency ~c, its delta function can be expressed by the summation of

two terms, each corresponding to one segment of the spectrum shown in Figure 6a.

b(r-i-’)=
sin(7t”  (r-r’)/&)

(
o exp{–j2n ;2} + exp{j27z*

(7c. (r-r’)/&)
}) (8a)

where A is associated with the carrier frequency, & = c / (2 IIr ) is the range resolution, c
is the speed of light, and l?r is the bandwidth of the radar. For a wide band radar with its

pulse spectrum shown in Figure 6b, the radar bandwidth is twice the radar center

frequency such that the two sidebands joini at the origin of the spectrum. In this case, the

effective radar bandwidth is doubled such that the range resolution is equivalent to one
eighth of the wavelength of the carrier frequency, i.e. &“= a /8, since the relationship
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between the carrier frequency and the total band width B, is given by ~c = ~r /Q. For

such a system, its associated delta function is simply

a(l–-?-’)=
sin(7r” (r-r’)/&)

(n’ ( r - r ’ )/  a l - )
(8b)

Unless pointed out, the analysis throughput this paper will be based on the wide band, low

carrier frequency case as shown Figure 6b.

For the URT system, all formulation for the point target response are applicable
except that c must be replaced by the speed of the ultrasonic wave in the imaging object.
For the parallel beam CAT system, only equations (6) and (7) are applicable. The range

resolution & is determined by the width of the x ray beam and the intensity distribution

of the x-ray within the beam. For simplicity, a sin x / x function is also used for the
following analysis on the CAT systems. For the fan beam CAT system, the range resolution
in Eq. (8) must modified to take into account the effect due to the varying distance from the

target to the x-ray source . Again, this effect is not considered in this paper for simplicity.

Plots of these point target response are given in F:igure 7. These curves can be
viewed as the superposition of a large number of short line segments, each with a different

slope. Since the two-dimensional Fourier transform of a line with slope s, length L, and

‘1 and width L–l , one cwidth D is another line with slope –S ‘*, length D an see that the

energy distribution of the 2-D spectrum of these point target response covers a very large

area. This indicates that high resolution image can be reconstructed by means of proper
filtering such as inverse filter or complex conjugate filter. Detailed analysis for the 2-D

spectrum of the PTR is given in Section 3. It can also be seen that in both 7a and 7b the

upper line segment is symmetric to the lower line segment. This implies that only one half

of the PTR is require for constrcuting image with a full resolution.

Based on circular symmetry, the data received by the sensor can be written as the
range integral of the azimuth convolution of the target signature with the point target
response.

E(r, e) = jp(rt,q) “ I’(r@(nw@@
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The circular convolution algorithm described in [22] is modified hereby utilizing the

2-D spectrum of the PTR as the reference function. Since the images obtained from [22] and
the proposed algorithm are in a polar coordinate, further interpolation is required to

convert them to a Cartesian coordinate. The image quality degradation due to this
interpolation is less severe than the interpolator used for converting the coordinate of the

spectrum [13]. This point will be illustrated furthermore in Section 8.

The basic equation for image reconstruction using PTR approach can be expressed

by the range frequency integration of the inverse azimuth transform of the product of two
dimensional spectrum of the received data and a reference function

O(r, 8) =
JJ

ll(R, @) J?e~~(R,@)”  e~2n60 “ dRd@ (lo)

where * denote complex conjugate operation, R is the range spatial frequency, @ is the

azimuth angular frequency, E( 1?,@) is the two dimensional spectrum of the received data,
and Ref ~ ( R, ~) is the reference function for ima~e reconstruction. Since the reference

function is r dependent, therefore, it needs to be updated for processing each image line.
The reference function is given by the product of an amplitude weighting function and the

two dimensional spectrum of the point target response of a point located at (r, O).

-j2z  r’li? . ~-j2x
Refr(R@) = wr(R, @)”~~fi(r’  -rot(O’, r, O))”e

where Wr ( R, (3) is the weighting function used to control the shape of

point target in order to meet the requirement for certain image application.

3. TWO-DIMENSIONAL SPECTRUM  OF THE I’TR

0’(3
dr’dtl’  (I I)

the PSF of each

Recent advancement in spaceborne SAR data processing utilizes the wave domain

approach [29,30]. The advantage of this approach is that it gives the exact solution to the
reconstruction problem. Its point spread function approaches the theoretical predicted
function. For the problem addressed in this paper, the 2-D spectrum of a PTR for a point
target located at (r, (3) can be expressed as

Ept (R,@)= ~~6(r’ - rOt(W,r, 0)) o e-j2z ‘“R, e-J2z  “edr’de’ (12)

9
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By eliminating the delta function, we have

llpt (l?,@)= ~e-J2Z ‘Or(o’’r’o)R . e-J2Z  “edr’dtl’ (13)

This is the Fourier transform of a frequency modulation signal. The approximation form of
the 2-D spectrum can be obtained by using the stationary phase principle [32]. Before

getting the Fourier transform, let us rewrite Eq. (12) as the summation of the Fourier
transforms of two segments of the frequency modulation signal.

(14)

These two segments of frequency modulation signals are characterized by their opposite
signs in the second order derivative of rot ( 0’, r, 0) . dl and 02 are the boundary points

between these two segments. The Fourier transform of Eq. (12) can be expressed by

Ept (l?,@)= Al (l?,@). ej@l(R’O) + A2 (R,(3)”  eJa’2(R’@)

–1/2
d2(–R. rOt(0)J

,where Ai(R, @ = m d~2
e= e.

. .

(15)

(16)

and
dlrOt (0’, r, 00 ) x

@i(R,  @)= 27L (–~” 00 –R”rOt(Oo))  –sgn[---- I--J (17)
d62

sgn[. ] is the sign function and e. is the stationary-phase point given by the solution of the

following equation

~z d(–El.O-  R.2rOt(@))=0

de

and 00 must satisfy 00 E (01, 02) for i=l, and 00 e (02, 01 ) for i=2.

10

(18)



.

For the PTR of CAT, URT, and HSAR given in section 2, their the stationary-phase
point (?0 can be solved as follows.

(1) CAT- Parallel Beam

(19)

(2) CAT- Fan Beam
_——

–B&&2  –4AC
(30 = q – s i n-](~), where x = — —–—---—————

2A ‘
(20)

(3) HSAR or URT
_—— .—.

--Bk~2 –4AC
60 = ~ – COS-l (x), where ~ = —.—________

2A
9

(21)
2 c = –(z?r~ t

A = (2 Rr~rt)2,  B= –2r~rf@ , r )2+ E12(r~+r~)

Obviouly, the frequency range of the frequency modulation signal e
-j2n rot(f3’,r,0)R

is linearly proportional to 1? and (linearly or nonlinearly) proportional to r. This frequency
range becomes zero at R = O or r = O. More detailed analysis of the frequency range of

each system is given in Section 5. Therefore, the energy distribu t ion of the 2-D spectrum of
the PTR is a triangular shaped function as shown in Figure 8. The spectrum magnitude can
also be obtained directly from a fast Fourier transform process as shown in Figure 9a
through 9C for three typical systems. These examples are given by a point target with

rt = r~. For the fan beam CAT case, the triangle is skewed due to the unsYmmetric sloPes

of the ascending and descending line segments in the PTR shown in Figure 7b.

The total integrated energy along any line of constant R is given by

(22)

According to Parseval’s  theorem, this integrated energy can be rewritten as
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P(R) = J’~zle-J2z  “’(e’’r’0)R12de’ = 2Z (23)

This indicates that the total integrated energy along any line of constant R is a constant.

Therefore, if this energy is uniformly distributed within the triangle, its magnitude must be

equal to I? –1/2 as shown in Figure 9d. The 1-D cuts of these spectra are plotted in Figure
10a through 10d. In general, the magnitude profiles follows that predicted by Eq. (16). The
high frequency variation in Figure 10a and 10b is due to the result of the superposition of

the two segments of the frequency modulation signals in Eq. (13). In CAT systems, the two

segments contains the identical information, so that one segment can be ignored. In a SAR
and an URT system, these two segments represents echoes reflected from the opposite sides
of the target. Thus processing with both segments may be desirable.

4. WEIGHTING FUNCTION SELECTION

In this section, it will be shown that proper weighting function can be chosen to

match the PSFS to those of several reported algorithms. In SAR processing, to maximize the
resolution, it is common to select an inverse filter [30], in which the amplitude is the
reciprocal of the 2-D spectrum. Hence, the weighting function IVr (R, ~) is the square of

the reciprocal of the 2-D spectrum. This weighting function will be denoted as

lEptJR,Q1-2. However, it is of great interest to chose Wr ( R, ~) to be the square of the

reciprocal of the 2-D spectrum shown in Figure 9d, or equivalently the absolute value of R,
then Eq. (10) can be rewritten as

(24)

By eliminating the delta function and replacing Zl(R,  ~) with the angular Fourier

transform of its 1-D range spectrum ~~ (1?, ~1 ), it can be shown that

(25)
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Since
J

~-J2Zol@eJ2n0’@  eJ2no@~@ = 6( @l – (0 + 0’)), Eq. (25) can be further reduced to

For a parallel beam CAT, rot ( @’, r, e) = r” COS( # – 8), therefore,

d~, 0) = JJEl (R, @’) .l~l.ej2~R-rcos(e’-O)dRdo’

(26)

(27)

Eq. (27) is identical to Eq. (23) in [6], which directly leads to the CBP algorithm. The PSF of

the reconstructed image for a point target using the CBP algorithm can be found in

Appendix A.

Let us consider the SAR and URT cases. If the weighting function Wr (R, ~) is,

however, chosen to be

Epl_r(R, @)m’v@,@
Vvr(lw) =IRI” -— (28)

‘p~-r(~,~) ‘

2 ‘J2Z ““~e’ and Ept_r(R,  @) i s  t h e  2 - Dw h e r e  lV1 (R,@) = ~(r~ / ~ot(o’,~,o)) e

spectrum of a point target located at (r, o). Then for a single point target located at
(r], 81), its PSF can be written as the following based on Eq. (10).

J.1 -j2n rOf(O’,rj  ,01 )R
apt (r, f3) = e “(1 Rl”(;~:__#2  )eJ2z  ‘“l(o’’r’o)RdRd@’  (29)

o

where apt denotes the PSF of a point target. Since the PSF resembles a delta function, only

the sidelobe near the peak are interested here. In other words, we want to obtain the value
of apt (r, (?) at (r, 0) where r – rl and e – f?l are very small, By using the approximation

rot(tY, r,8)– T-ot(o’,  r1,81) = r~(rl sin(a’+Ae)–~sin(~’))/ ~ot(~’,~,e)l (30)

Eq. (29) can be expressed as
13



(r$rl  sin(c#+AO)-r,~sin(  a’))R

Jj(

j2n --—--— —-----
apt (r, 0)= IN”( ‘s ) 2 )e rot(8’,r,0) dRdO’ (31)

rot (9’, r, 0)

where A@ = O – 01. By changing variable from R to R’ = Rs (---- ‘s ), Eq.
rol (8’, r, 0)

(31) is given by

opt (r, 0)=
II

~)ej  2@rl ‘in(a’+A8~- ‘sin(a’))R’d~ld& (32)

Equation (32) is identical to (A2). Therefore, the resulting I’SF also follows that of the

Fraunhofer diffraction of a circular aperture. This is also true for the exact inversion

algorithm [7] (see Appendix B).

Similarly, for a fan beam CAT system, the weighting function with the following

form would yield an PSF having the ideal J1 (~’;)/ (2r&) form.

Ept_r(R,  @) @ W2 (R,@)
wr(R, @)=lRl, —--—

Ept_r (R,@) ‘
(33)

The weighting functions suggested in this section allow the image reconstructed
with an ideal PSF form. If further shaping to the PSF is required to reduce the sidelobes,

one can simply add an additional weighting, expressed the function of R, to the first one.
Detailed analysis on the performance of various type of weighting  functions can be found
in [33].

5. SAMPLING SPACING AND RESOLUTION

According to the Nyquist theorem, the range sampling spacing must follow the
range bandwidth, which is determined by the pulses transmitted by the radar or the

ultrasonic transducer or determined by the x-ray beam width for the CAT systems. The
azimuth sampling spacing, or the azimuth sampling angle, can be determined by two

1 4



reasonings. The first reasoning can be illustrated by Figure 11 for a parallel beam CAT

system. The two lines represent the spectra of two projections. At each end of the spectra,
the spacing between two lines must be no less than the resolution width of the spectra.

Since the resolution of the spectra is given by the ratio of the range bandwidth F to the
number of samples received N~, the azimuth angle spacing is given by 2 / N~. For one
complete circle, the total number of azimuth samples is therefore equal to z” N~.

The second reasoning for the azimuth sampling angle is a more general one. It is

based on the maximum azimuth bandwidth of the PTR. The azimuth angular frequency
profile is given by

d R9-o@)
e(e)= do . (34)

For a parallel beam CAT, it follows that @(o)= R o rt ‘ sin o. The maximum and

minimum angular frequencies are therefore *R” rl. Since I RI <1 / (2 a~) and i“t s ~~, the

maximum azimuth angular frequency bandwidth is 2 r$ / (2 ~r). This is further reduced to

N~ / 2 by letting N~ = 2r~ / c%. Now, we reach the same conclusion that the minimum
azimuth angle spacing must be no less than 2 / N~. For a fan beam CAT, it can be shown

that maximum azimuth angular frequency bandwidth is (r~ / ~r) o (sinz ~ / COS(2 ~)) .

Since the factor (sin2 ~ / COS(2 ~)) is less than one, the azimuth angle spacing for a fan

beam CAT must be finer than 2 / N~.

For a URT system, The maximum azimuth angular frequency bandwidth is r~ / &.

Similarly, for this system the minimum azimuth angle spacing must be no less than 2 / N~.
For a HSAR system, the maximum azimuth angular frequency bandwidth is

r“
2–~  h2+4rf)”r~(r. / &). (2r: +h -

F‘l. The factor (2r~ + h2 –h h2 +4r~ )“ r~l is

greater than one, therefore, the azimuth angle spacing for a lISAR system must be greater
than 2 / N~.

The azimuth spatial resolution is determined by the product of the distance between
the target and the center of circle and the reciprocal of the azimuth angular bandwidth. The

azimuth angular bandwidth as a function of the target to center distance are summarized
below:

(1) Parallel Beam CAT and URT

15



Ba(r~)=r~/&- (35)

(2) Fan Beam CAT

l?a(rt)  =pl(?-~)”+i - (36)

where ~1 (rt) = (r~ / tan ~)2/((r~  /tan y)2 – T“;).

(3) Holographic Synthetic Aperture Radar

Ba(?-t)=f12(r~)”r@ (37)

It is obvious that for the parallel beam CAT and the URT systems, the azimuth
spatial resolution is equal to a constant of &. For the fan beam CAT system and the HSAR
system, the azimuth spatial resolution is equal to a constant of & / ~1 (rt ) and
& / ~2 (rt ), respectively. The azimuth spatial resolution of these four systems are plotted

in Figure 12. After all, the actual resolution of the final image is also affected by the
weighting functions applied.

6. SIMULATION RE’SULTS

A simulation was performed to test the proposed algorithm and to verify the

analysis on the PSF resolution. The received data is the simulated echo of ten point targets
distributed along a spiral curve for various angles and target-to-center distances. The point
targets are reconstructed using the proposed algorithm with several different weighting
functions. Finally, these images are oversampled  and resampled  to the rectangular

coordinate to better reveal their PSF shapes.

Shown in Figure 13a and 13b are the PSFS for the parallel beam CAT system with a

weighting of I RI and an inverse filter Weighting I ~l,t.r  (~, @)1-’2, respectively. Each image

only has 64 resolution cells along the diameter of the image. The grey levels of these images
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are adjusted to let the sidelobes shown more clearly. One can see the one with the inverse
filter has significantly worse sidelobes. Figure 13c shows the PSFS with a weighting of
Il?l”Ka (R, a) and ~ = 0.8. Where Ka (R, ~) is a Kaiser weighting and ~ is the

weighting coefficient. These PSI% have a lightly worse resolution but much better sidelobe

performance. The resolution of the RF in Figure 13a is directly measured from the
oversampled data. Its 3-dB resolution is given by 1.029& as that predicted from the
Fraunhofer diffraction of a circular aperture. Figure 12d shows the PSFS obtained directly

from the form of ~1 ( -&) / (2r&). There is very litter difference between Figure 13a and

13d. The simulated PSFS for the fan beam CAT, HSAR, and URT systems are also obtained.
Their PSFS with different weighting functions are very similar to that of Figure 13a through
13C.

In HSAR and URT systems, a transmitted pulse with a center frequency several

times greater than the pulse bandwidth (see Figure 6b) may be considered. A simulation
was carried out with a pulse bandwidth only .133 times of the carrier frequency. Its PSF is
shown in Figure 14. This PSF exactly follows that of the Fraunhofer diffraction of a ring
aperture. The 3-dB resolutions of this case is still close to 1.029 Jr. But, it has a much worse
integrated sidelobe  ratio.

7. IMPLEMENTATION APPROACH

In general, the image reconstruction process based on Eq. (10) consisted of five steps:

(1) transforming the data echo into its 2-D spectrum, (2) generating the reference function,

(3) spectra multiply and summation in range, (4) Inverse Fourier transformation in
azimuth, and (5) convert image pixels from a polar coordinate into a Cartesian coordinate.
For the HSAR case a slant to ground range conversion maybe inserted between step (4)

and (5). Obviously, the fast Fourier transform (FFI’) is the most efficient for steps (1) and

(4). In multiplying the reference function to the data spectrum a large number of
multiplications can be saved due to the characteristic cs of the reference functions. First, there
is about 75% of the total samples in the reference functions associated the value of zero.
This is because the number of zeroes” in each reference function set changes linearly (or

nearly linearly) from 50% to approximately 100% for their corresponding r value varying
from r~ to zero. In addition, the spectrum in the half plane with negative R values is the

complex conjugate of the other half of the plane. This represents an additional 50°/0
reduction of the multiplications. Overall, the number of multiplications required is only
12.57. of the total number of samples in the reference functions.



Reference functions may be realized either based on the analytical solution given in
Eq. (15) or by taking a 2-D FFT on the point targef response. For systems with relatively

small number of data samples such as CAT and URT, the reference functions may be
generated by the later approach for higher accuracy. To avoid a loss in the processing

efficiency, the reference functions may be generated before data processing and stored in
computer memory permanently. For a fan beam CAT with 320 X 320 image pixels, the
amount of memory required for all 160 sets of reference functions is about 21 MB (mega

bytes), which is well within the capacity of the mosi present day baseline computers. For a
parallel beam CAT, the memory size required is even less. This is because that among all
160 sets of spectra, each corresponding to a unique target to center distance, there is a
redundancy due to that R o rot(e) in Eq. (15) and (16) has the property of

rl
R“rOt(f3)  =R”rtcos@  =c1R”-cos8 (38)

c1

Another words, the spectra Ept–rt (R, O) used for focusing target at rt is equal to the

spectra Ept–rt ICI (cl . R, 0) used for focusing target at rt / c1.

To be noted is that the PTR modeling for a fan beam CAT is simplified in this paper.
In implementing a fan beam CAT data processor, one must take into account the effect of
varying range resolution, due to the changing distance between the x-ray source and the

target, in the PTR obtained from all azimuth angles.

8. DISCUSSION

Although the operations (multiplications and additions) required by using this

algorithm is 0(N3 ), the actual number of operations is much better than the CBP
algorithm for the reasons given in section 7. For a CAT system with pre-generated

reference functions, the number of operations required to generate an image with 320 X 320
pixels is estimated to be within 50 million. This is approximately one order of magnitude
lower than the CBP algorithm. Furthermore, for systems with 320 X 320 image pixels the

number of operations is also very close to that of the direct inverse FFT algorithm.

Aside from its superior computation efficiency, the proposed algorithm also
produces images with better quality. In the proposed algorithm, the interpolation for
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converting image pixels into a Cartesian grid is performed on real-valued image pixels
with its full resolution. The interpolation error correlates with the magnitude of the local
image pixels. Another words, image pixels with higher intensity are associated with grater

interpolation error and image pixels with lower intensity are associated with lower

interpolation error. In the direct Fourier algorithm [13], the interpolation for the converting

the spectrum coordinate is performed on complex-valued spectra samples. After inverse
FFT, the effect of interpolation error is uniformly distributed in the final image. Therefore,
image pixels with lower intensity may be associated with higher error. This explains why

the degradation of interpolation in the proposed algorithm is less significant than the

spectrum interpolation involved in the direct inverse FFT algorithm. In the CBP algorithm,
the convolution process can also be viewed as a large number of interpolations. The
interpolator is its kernel function [6]. To improve image quality by using a longer kernel

would increase the total number of operation by 0(ZV3 ). However, in the proposed

algorithm, to improve image quality by using a longer interpolator would increase the total

number of operation by 0(N2 ). Therefore, the proposed algorithm is also more cost
effective in the trade-off between the computation load and image quality.

In any imaging systems, there exists certain amount of the system thermal noise.
This noise is caused by the quantization error, the environment noise (for radar and

ultrasonic), and sensor noise. Since the input data samples are in a polar grid, the number

of samples near the center is more dense than that near the imaging circle and exceeds that
required by the Nyquist  rate. Therefore, one may use a low pass filter in the azimuth
dimension with a bandwidth tuned for each radius to reduce the thermal noise. Another

reason for performing low pass filtering is to remove the artifact of azimuth aliasing [13]. In
both the proposed algorithm and the CBP algorithm, the low pass filtering is effectively
accomplished without extra computation. However, for the direct inverse FFT algorithm,
low pass filtering does impose extra computation load to the overall processing.

Although this paper is limited to the systems of circular symmetric observations, the

PTR formulation, 2-D spectra analysis, and the image reconstruction algorithm may be
applied back to the straight line path systems such as a wide beam, wide band airborne

SAR. Similarly, it may also be applied to narrow beam and narrow band spotlight SAR. In
addition, its application may be extended into the 3-D imaging area. An example of this is
an URT system shown in Figure 15. The imaging observation points is uniformly
distributed on the curved surface of a cylinder surrounding the object.
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9. SUMMARY

This paper uses the point target response to formulate a general image

reconstruction solution to several imaging systems including HSAR, CAT, and URT

systems. The proposed algorithm is also applicable to many other systems mentioned in

this paper. The quality of images generated by this algorithm is superior to other previouly
repoted algorithms. By incorporating proper weighting functions, the resulting PSFS can be

made exactly following that predicted by the Fraunhofer diffraction. In addition, further

shaping for the PSF may be achieved by applying extra weighings. This algorithm can be

implemented in several different ways. When applied to the CAT system, its throughput
rate is an order of magnitude higher than the commonly used convolution backprojection

algorithm.

APPENDIX A POINT SPREAD FUNCTION CIF CAT WITH CBP ALGORITHM

According to [6], the parallel beam CAT image reconstructed by the CBP algorithm
can be expressed by

d~, e) = JJE] (R, 0’) “lR1.eJ2nR”rcos( e’–e)~~~e’, (Al)

where El (R, (3’)  is the Fourier transform of the projection at angle 0’. In order to derive

the PSF, we substitute El (R, d’) with that resulted from a point target located at (rl, 81 ).

Equation (A2) can also be expressed as

(A2)

(A3)

where A(R, 0’)= eJ2m~”rl  Cos(o’-ol), , for - ~ < Rcos 0’<  CO,

20



.

1
and ll(l?, e’)=1, for O< R<2z; a n d  0<&<2n.

= O, otherwise

Since the Fourier pair of the product of two functions is equal to the convolution of the
Fourier pairs of each individual one, we have

Japt (~, e)= ~A(R, @’) .lll.ej2zR”rc0s(  o’–fl)dR&)’

8
JJ

~(R, o’).l  Rl.ej2nR”rc0s(o’-o)  ~Rd~’
(A4)

The result of equation (A4) is simply

This is a PSF of a point target centered at (rl, 01 ) with the shape of

J1 (&)/ (2r6r),  which is the Fraunhofer diffraction pattern of a circular aperture [34].

APPENDIX B POINT SPREAD FUNCTION OF NORTON’S SOLUTION

According to [7], the image can be reconstructed by the following equation

cm 1
O(r,e)= ~ I/n{ gn (P)  jn~

2?q? ‘}’
H() {-— –

n.–cw Jn (~Z)
(Bl)

where Ho and Hn are the Hankel transform operator of the O-th and n-th order,
respectively, Jn (x ) is the Bessel function of the n-th order, and

gn (P)= ~g(~, O)e-~nodO. (B2)



.

where g(~, @) is the data received by the sensor. To obtain the PSF of a point target, one

must replace g(p, (3) with a point target response. Assuming that the point target is
located at (r], @l ), then according to Eq. (B2), its harmonic expansion can be expressed as

J2Zd@[(r~ + R2 – 2r1Rcos@)1’2 - p]c-)z@&Z(P)  =  e-ne] ~ (B3)

The R in (B3) is the r~ in this paper. using Eq. (9) in [7], Eq. (B3) can be reduced to

J–-nol 2zp Z “ z “4) (pz)Jn  (’zwn  (w )gn (p)= c o
(B4)

By inserting Eq. (B4) into Eq. (Bl) and changing the notation of a(r, e) to CTpt (r, 0), we

have

cm

opt (r, B) = e ‘nol ~ f“. dz .Jn (zr)Jn  (zrl )e~no (B5)
n=–w

By inserting the Bessel functions into Eq. (B5), it is then given by

1
opt (r, 0)= i e-ne’J;dz(J2ne’(’’a-zrsina)~~)

(2Z)2 n=--

(J )
z ej(nd-zrl  sin Cx’)da, e jn6J
–n

(B6)

Using the identity of ~e-jr46j–~–cz’-@  = 6(81  -. ~ – ~’ – e) and changing the

n=–oo

variable z to 2 z” R, (B6) can be further reduced to

z e–j2rcRrsin  apj2nRr1  sin(a+(O-O1 ) )d a ) W’)Opt(r,e) = j~. dRQ(l_Z ~

The sine function can be replaced by a cosine function since the integration is over a

complete cycle. Therefore, Eq. (B7) is identical to Eq. (A2) and its PSF can be expressed in
Eq. (A5).
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Figure 7 Point target response of (a) CAT parallel beam,
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Figure 8. Energy Distribution of the Spectrum of a Point Spread Function
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Figure 9 Magnitude of the 2-D spectrum of the PTR
of (a) CAT parallel beam, (b) CAT fan beam,
(c) HSAR or URT, and (d) l/~
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Figure 13 Simulated point spread functions of point targets
of CAT parallel beam (a) I R I weighting, (b) inverse
filter, (c) I R I ‘Ka(R,O.8)  weighting, and (d) standard
PSF form
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Figure 14 Simulated point spread function of point
targets of HSAR with range bandwidth being
.133 times of the radar center frequency
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Figure 15A 3-D ultrasonic reflectivity tomography system
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